报 告 人: 张 原 北京大学
报告时间: 2020年10月23日 14:30-17:30
地 点: 腾讯会议 (ID: 590 710 172)
摘 要: In this talk, we will discuss geometric properties of Finitary Random Interlacements $\mathcal{FI}^{u,T}$ in Zd. We prove that with probability one $\mathcal{FI}^{u,T}$ has no infinite connected component for all sufficiently small fiber length $T>0$, and a unique infinite connected component for all sufficiently large $T$, and chemical distance on the infinite cluster is of the same order as Euclidean distance. We also present the local uniqueness property and an asymptotic shape theorem. Researches joint with E.B. Procaccia, J. Ye, Z. Cai, and X. Han.
报告人简介
张 原 北京大学数学科学学院研究员,2015年于美国杜克大学取得博士学位,研究方向为交互粒子系统及其应用,随机游动,随机交织,在 The Annals of Applied Probability,Annals of Mathematical Sciences and Applications,Electronic Journal of Probability等期刊发表学术论文10余篇。